
Polymorphism
The classic explanation of polymorphism is to break the word down into two Greek words, ‘poly’
meaning ‘many’ and ‘morph’ meaning ‘shape’ giving us ‘many shapes’. I have always felt that this
explanation was particularly lacking in usefulness so we will leave this explanation behind and
continue on a more lucid thread.

Polymorphism can be described as the ability to send the same message to objects of different types.
For example, you can send the ‘Next’ message to a TTable object to instruct it to go to the next
record. You can also send the same message i.e. ‘Next’ to a TClientDataSet to instruct it to go to the
next record. This ability is called ‘polymorphism’ and it has a single purpose: to allow you to write
more generic code and, therefore, more reusable code. Continuing with the TTable/TClientDataSet
example you should be able to write a single routine which would work with both a TTable and a
TClientDataSet where all of the code is generic.

Before we see an example of how it works in code we need to cover how it doesn’t work. This may
seem a strange place to begin but it is what you start with if you don’t take any further action.
Consider the following piece of code:

var
 ShadowedBox: TShadowedBox;
 Box: TBox;
Begin
 ShadowedBox := TShadowedBox.Create(10,10,70,20);
 ShadowedBox.Show; // TShadowedBox.Show
 ShadowedBox.Free;

 Box := TShadowedBox.Create(10,10,70,20);
 Box.Show; // TBox.Show
 Box.Free;
End;

There are really two examples in one here. Firstly, there is a variable, ShadowedBox, of type
TShadowedBox. The subsequent code creates a TShadowedBox object, shows it and frees it. The
Show method which executes is the TShadowedBox.Show method. This part of the example is not in
the slightest hit surprising. There is nothing new to learn in this part. It exists simply to prove what
you already know and to prove it alongside another example which might make you think a little.

The other part of the code is apparently meaningless. For the moment suspend your criticism of what
appears to be a nonsensical example and trust that there is a point. The second part of the code
declares a variable, Box, of type TBox. It then creates a TShadowedBox and assigns it to the variable,
shows the box and frees it. The Show method which executes is the TBox.Show method and this is
sometimes surprising to Delphi programmers. The object in question is a TShadowedBox object but
the method which was executed was the TBox.Show method and no the TShadowedBox.Show
method. Why? Remember the variable declaration? The variable was declared as type TBox and not
of type TShadowedBox.

There is a way to get the TShadowedBox.Show method to execute instead of TBox.Show. We will
cover this in a moment but before then we need lo explain what a ‘generic’ class is. Consider this
example:

var
 Box TBox;
 ShBox: TShadowedBox;
 InBox: TIntelligentBox
begin
 Box := TBox.Create;
 ShBox := TShadowedBox.Create;
 InBox := TIntelligentBox.Create;

 ShowBox(Box);
 ShowBox(ShBox);
 ShowBox(InBox);

 Box.Free;
 ShBox.Free;
 InBox.Free;
end;

procedure ShowBox(Box: TBox);
begin
 Box.Show;
end;

This code creates three boxes of three different classes, TBox, TShadowedBox and TlntelligentBox.
TShadowedBox and TlntelligentBox both inherit from TBox. Then, the three boxes are passed to a
procedure called ShowBox in order to show the box. The procedure called ShowBox receives a single
parameter, Box, of type TBox. In this context TBox is called a ‘generic’ class. It means that the
parameter being passed in can be either TBox or a descendant of TBox. On the next line the box is
sent the Show message. This line is polymorphic; it sends the same message (Show) to objects of
different classes (TBox, TShadowedBox and TlntelligentBox). Unfortunately for us, it doesn’t execute
the correct Show method and that’s the problem we are going lo solve next.

Incidentally, the definition of polymorphism is a little bit confused in the Delphi world. When Delphi 1
was released people believed that polymorphism was the ability to send the same message to objects
which inherit from a common ancestor. Certainty this definition of polymorphism was true for Delphi
1 but the requirement lo inherit from a common ancestor is specific to Delphi 1 and 2 and not to
other languages which implement polymorphism. Delphi 3 added support for Interfaces and this
meant that Delphi could support the same definition of polymorphism as other languages because
Interfaces do not require you to inherit from a common ancestor.

Method Directives
A method directive specifies how overridden methods should be handled and, therefore, whether
polymorphism should work. Delphi supports the following three directives:

Static

Overridden methods are not seen by generic
class types

Default Directive

Virtual Overridden methods are always seen Faster than dynamic
Dynamic Overridden methods are always seen Less memory than virtual

The default directive is Static and this is the cause of the symptoms which we have seen so far. The
TBox.Show method was Static and it meant that any variable which was declared of type TBox would
always get the TBox method and not the overridden method. This explains why the first example
executed the TBox.Show method and not the TShadowedBox.Show method even though the object
was constructed from the TShadowedBox class.

The other two directives, Virtual and Dynamic, essentially achieve the same result: they make
polymorphism work. When they are used overridden methods are always seen regardless of how the
variable was typed. So if the variable is a TShadowedBox then the TShadowedBox.Show method will
always be executed regardless of its context if the parent’s method is either Virtual or Dynamic.

To use Virtual or Dynamic you must remember that there are two halves to the process. First, we
need to instruct the parent’s method that child classes can override the method and, second, we
need lo instruct the child’s method that it is actually overriding the parent’s method. Let’s see an
example. Here are the TBox and TShadowedBox classes re-implemented using the virtual and
override keywords:

TBox = class
 Left : integer;
 Top : integer;
 Bottom : integer;
 Right : integer;
 Constructor Create(crLeft, crTop, crRight, crBottom : integer);
 procedure Show; virtual;
 procedure Hide;
end;

TShadowedBox = class(TBox)
 procedure Show; override;
end;

Armed with these changes the previous two examples will always call the overridden method no
matter what the context.

So when should you use Virtual and Dynamic? Unless you have a good reason not to use these
directives then you should always use them for every method which is not Private. The good reason
not to is usually speed. Static methods do not go through a lookup process at runtime so they
execute slightly faster.

Virtual vs. Dynamic
We have two method directives, virtual and dynamic, which achieve the same
result. There is a general rule of thumb for which one to use which goes like this:

Virtual is faster than dynamic. Dynamic uses less memory than virtual.

This would be a helpful guide to remember if it weren’t for the fact that it is not always true. I will
digress into a short discussion on the technical differences between virtual and dynamic but you do

not need to know or understand the discussion. If you wish to skip to the next section you can do so
and remember a simpler maxim:

Always use virtual (unless memory is critical and you are prepared to prove that dynamic really does
use less memory than virtual in your class hierarchy).

Now for the discussion on the technical difference. A virtual method’s lookup information is stored in
a table called a Virtual Method Table (VMT). Every class has a VMT. When a message is sent to the
object the object attempts to resolve the name by looking it up in the VMT. Each VNT contains a list
of all of the virtual methods that the class introduces plus all of the virtual methods of its parent.
Because its parent’s VMT also contains all of the virtual methods of its parent you can see that each
class’s VMT is a complete record of all of the virtual methods that could be executed for an object for
this class. The benefit is that any attempt to execute a virtual method requires just a single lookup
into the VMT regardless of which ancestor actually implemented the method. This is the reason why,
earlier, I said that the ‘tree was flattened’ and that Delphi doesn’t suffer the performance penalty that
applies to some other languages. The downside to this is that because each class’s VMT contains the
complete record of all of the class’s virtual methods it requires an equivalent amount of memory to
hold this VMT.

This is where dynamic methods come in. Dynamic methods are stored in a Dynamic Method Table
(DMT) which is similar to a VMT. However, the entries in a DMT are just the methods which are
implemented in the class alone and not all of the parent’s entries as well. When a method name
needs to be resolved the class’s DMT is looked up for the method name and if it is not found then the
class’s parent’s DMT is looked up. The lookup continues back up through all of the ancestors until it is
found or there are no more ancestors. There are two consequences of this. Firstly, the lookup process
can be slower than for a VMT because there may be as many lookups as there are ancestors.
Secondly, the DMT only contains the entries it needs to contain and therefore is usually smaller than
the equivalent VMT.

All of this information leads us to believe that the original rule of thumb (i.e. Virtual is faster than
dynamic. Dynamic uses less memory than virtual) is correct. The reason why it is misleading is that it
doesn’t take into account the size of the entries in the VMT and the DMT. The entry in the DMT is
bigger. The entry in the VMT is just a method pointer but the entry in the DMT is a method pointer
and also a method number. So it is problematical to tell whether the dynamic method uses less
memory or not. You would need to perform a calculation yourself in order to determine the total
memory requirement of a VMT as opposed to the total memory requirement of a DMT. All of this is
affected by how many ancestors a class has and in which ancestors the methods are implemented
and overridden so you can see how difficult it is to be sure that dynamic really does use less memory
than virtual.

Abstract Methods
Delphi allows any virtual or dynamic method to be an abstract method. An abstract method is one
which is not implemented by the class in which it is declared. Here’s a TBox class which has an
abstract Execute method:
TBox = class
 protected
 function Execute: boolean; virtual; abstract;
end;

At first sight it seems like a strange concept to declare a method but to provide no implementation
for it. In practice this is a very useful concept. It allows you to build classes where you know what the
class will look like when it is finished but it is up to the subclasses to finish it off. Such classes are
often called abstract classes. TDataSet is a classic example of an abstract class. It contains many
methods which are marked as abstract. TDataSet knows the syntax of these methods but because
TDataSet is generic it cannot implement them. Instead it leaves them to subclasses like TTable and
TClientDataSet to provide the missing pieces. The abstract class is useless by itself the benefit is that
people can use TDataSet as a blueprint for what the class should look like when it is finished by a
subclass.

Another good example of an abstract class is TThread. TThread knows all about running a separate
process. It simply lacks the all important method which contains the code which should execute in the
separate process. As a result TThread.Execute is abstract.

Of course if someone were foolish enough to try to use it like this:

var
 Box: TBox;
begin
 Box := TBox.Create;
 Box.Execute;
 Box.Free;
end;

then the compiler would generate the following warning:

Warning: Constructing instance of ‘TBox’ containing abstract methods

If you were foolish enough to execute the code then it would fail on the
Box.Execute line with an ‘Abstract error’.

